Description

ELSYS Eco is a LoRaWAN indoor climate sensor that measures temperature and humidity. This sensor is an environmentally friendly option, with an organic solar cell as the only power source and an enclosure made from biodegradable material. Removing batteries from a wireless IoT device significantly reduces the environmental impact and maintenance costs. Eco has a Scandinavian design, which fits nicely in any application.

The sensor can last up to 50 days in the dark depending on the sample interval, transmit interval, data rate, and environmental factors. It can be used with a self-adapting feature, which results in lower current consumption and better performance.

- Temperature and humidity sensor
- Powered by organic indoor solar cell
- Made from biodegradable material
- Wireless and battery-free
- Scandinavian design
- Lasts up to 50 days in the dark
- Self-adapting feature
- Easy configuration

Device Description

Mechanical specifications

<table>
<thead>
<tr>
<th>Spec</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>50 g</td>
</tr>
<tr>
<td>Dimensions</td>
<td>66 x 66 x 17 mm</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Biodegradable material. Biodolomer®</td>
</tr>
<tr>
<td>IP rating</td>
<td>IP20</td>
</tr>
<tr>
<td>Mounting</td>
<td>Screw/Adhesive tape</td>
</tr>
</tbody>
</table>

Operating conditions

- Temperature: 0 - 50 °C
- Humidity: 0 - 85 % RH
- Usage environment: Indoor

Device Power Supply

- Battery type: Lithium-ion capacitor (LIC)
- Expected battery life: Up to 50 days in the dark\(^1\)

Device Logging Function

- Sampling Interval: 10 min (Default)\(^2\)
- Data upload Interval: 10 min (Default)\(^2\)

Radio / Wireless

- Wireless technology: LoRaWAN® 1.0.4
- Wireless security: LoRaWAN® End-to-End encryption (AES-CTR), Data Integrity Protection (AES-CMAC)
- LoRaWAN device type: Class A (configurable) End-device
- Supported LoRaWAN® features: OTAA, ABP, ADR, Adaptive Channel Setup
- Supported LoRaWAN® regions: EU863 – 870, IN865
- Link budget: 137 dB (SF7) to 151 dB (SF12)
- RF transmit power: 14 dBm

\(^1\) Depending on the sample interval, transmit interval, data rate, and environmental factors.
\(^2\) Configurable via NFC and Downlink.
Sensors

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 °C</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 0.2 °C (see figure 1)</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 % RH</td>
</tr>
<tr>
<td>Accuracy at 25 °C</td>
<td>± 2 % RH (see figure 2)</td>
</tr>
<tr>
<td>Accuracy of humidity over temperature</td>
<td>See figure 3</td>
</tr>
</tbody>
</table>

The self-adapting feature
The feature is optional but recommended. With the feature activated, the sensor will adapt the transmission rate if the measured data is unchanged. This will result in lower current consumption, lower network load, and less redundant data sent.

The biodegradable material
Biodolmers' biodegradable material is carefully chosen for the making of the enclosure. The material consists of bio-based biodegradable ester mixed with fiber, calcium carbonate, and vegetable oils.

The solar cell
The indoor solar cell is Epishine's Organic Indoor Light Energy Harvesting Module. The cell is adapted for an indoor environment and is sensitive to high light intensities. Direct sunlight for a prolonged time may degrade performance and lifetime. Occasional short exposure (~2h/day) to strong light intensities, such as sunlight through a window, should not affect the cell.

How to recycle
Remove the back panel and then separate the circuit board from the enclosure. Sort the enclosure into your food waste and the circuit board with the solar cell in electronic waste.

Avoid
- Using the sensor outside.
- Placing the sensor where it constantly is exposed to direct sunlight.
- Removing the back panel.